The ventilated pool: A model of subtropical mode water
نویسندگان
چکیده
An analytical model of subtropical mode water is presented, based on ventilated thermocline theory and on numerical solutions of a planetary geostrophic basin model. In ventilated thermocline theory, the western pool is a region bounded on the east by subsurface streamlines that outcrop at the western edge of the interior, and in which additional dynamical assumptions are necessary to complete the solution. Solutions for the western pool were originally obtained under the assumption that the potential vorticity of the subsurface layer was homogenized. In the present theory, it is instead assumed that all of the water in the pool region is ventilated, and therefore that all the Sverdrup transport is carried in the uppermost, outcropping layer. The result is the formation of a deep, vertically homogeneous, fluid layer in the northwest corner of the subtropical gyre that extends from the surface to the base of the ventilated thermocline. This ventilated pool is an analog of the observed subtropical mode waters. The pool also has the interesting properties that it determines its own boundaries and affects the global potential vorticity-pressure relationship. When there are multiple outcropping layers, ventilated pool fluid is subducted to form a set of nested annuli in ventilated, subsurface layers, which are the deepest subducted layers in the ventilated thermocline.
منابع مشابه
Eastern North Pacific Subtropical Mode Water in a general circulation model: Formation mechanism and salinity effects
The Eastern North Pacific Subtropical Mode Water (ESTMW) is a water mass of low potential vorticity (PV) and appears as a weak pycnostad or thermostad. Distinct from other subtropical mode waters, it forms in the absence of a deep winter mixed layer. The formation mechanism of this ESTMW is investigated using an ocean general circulation model that is forced by monthly climatological temperatur...
متن کاملMode Water Variability in a Model of the Subtropical Gyre: Response to Anomalous Forcing
The response of mode water formation to typical atmospheric forcing anomalies is studied as a possible mechanism for generating the observed interannual to decadal variability in mode water. An isopycnal model of the North Atlantic subtropical gyre, coupled to a mixed layer model, is used for this purpose. Geometry and forcing are idealized. The control run shows that mode water is a well-venti...
متن کاملMode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections
[1] Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analyzed to assess the dynamics and variability of the North Pacific Subtropical Countercurrent (STCC). Consistent with observations, the STCC is anchored by mode water to the north. For the present climate, the STCC tends to be stronger in models than in observations because of t...
متن کاملIntroduse and Need Assessment of Regional Aircrafts by Software and Modeling
An analysis was conducted to examine the market visibility of small aircraft as a transportation mode in competition with automobile and scheduled commercial air travel by estimating the pool of users that would potentially switch on-demand air travel due to cost/time saving. These new aircraft greatly increase the practicality of regional aircraft as a transportation mode that can avoid the co...
متن کاملStochastically Forced Mode Water Variability
Substantial interannual to decadal variability is observed in the properties of subtropical mode water of the North Atlantic. In this study the response of mode water to stochastic atmospheric forcing is investigated in a numerical model. In a series of experiments the response is studied to different components of stochastic atmospheric forcing, such as wind stress, freshwater flux, and heat f...
متن کامل